Докажите, что для любого натурального n верно равенство:
(n-1)!+n!+(n+1)!=(n+1)^2(n-1)!
(n-1)!+n!+(n+1)!= (n-1)!+n(n-1)!+n(n+1)(n-1)! = (n-1)!(1+n+n(n+1)) = (n-1)!(1+n+n?+n) = (n-1)!(1+2n+n?) = (n-1)!(1+n)?
Поставь лучший: з
Оцени ответ
Если тебя не устраивает ответ или его нет, то попробуй воспользоваться поиском на сайте и найти похожие ответы по предмету Алгебра.
Найти другие ответыАлгебра, опубликовано 11.11.2018
Алгебра, опубликовано 11.11.2018
Алгебра, опубликовано 11.11.2018
Срочно. Найдите 43 член арифметической прогрессии (an), если a1 =-9 и d=4
Алгебра, опубликовано 11.11.2018
Разложите многочлен на множители: a) 4с3 ?32
b)9x2 ?6xy+y2 +12x?4y
c) m2 +n2 +2mn+2m+2n+1